

AFRL-IF-RS-TR-2003-133
Final Technical Report
June 2003

UNIFIED MODELING LANGUAGE (UML) FOR
INFORMATION ASSURANCE (IA)

Trusted Information Systems

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J758

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-133 has been reviewed and is approved for publication.

APPROVED:
NANCY A. ROBERTS
Project Engineer

 FOR THE DIRECTOR:
JAMES A. COLLINS, Acting Chief
Information Technology Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JUNE 2003

3. REPORT TYPE AND DATES COVERED
Final Apr 00 – December 02

4. TITLE AND SUBTITLE
UNIFIED MODELING LANGUAGE (UML) FOR INFORMATION
ASSURANCE (IA)

6. AUTHOR(S)
Brent Whitmore and Brian Appel

5. FUNDING NUMBERS
C - F30602-00-C-0081
PE - 63760E
PR - IAST
TA - 00
WU - 13

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Trusted Information Systems
Network Associates Laboratories
Network Associates, Incorporated
15204 Omega Drive, Suite #300
Rockville Maryland 20850

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-133

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Nancy A. Roberts/IFTB/(315) 330-3566/ Nancy.Roberts@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The IA UML project sought to design and create a simple but powerful methodology and notation for analyzing
assurance within the context of a system analysis and design. With such tools, software developers and information
assurance analysts express their common problems and solutions in a fashion accessible to both groups. The project
extended the common Unified Modeling Language™ notation to express IA concepts. The report documents the
history, developments, and conclusions of the project. It recommends practices for software development and suggests
possible future work in this area.

15. NUMBER OF PAGES
31

14. SUBJECT TERMS
Unified Modeling Language, UML, Modeling, Information Assurance, IA, System Analysis, System
Design, Assurance Arguments, Domain Model, UML Profile, Object-Oriented Software Engineering,
Design Notations, Analysis Notations, Software Methodology, Assurance Methodology, IAUML

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

TABLE OF CONTENTS

1. INTRODUCTION ..1

2. ORIGINAL GOALS...2

3. HISTORY..3

4. UML ..4
4.1. What It Is ... 4

4.2. Current uses ... 6

4.3. Extensions.. 7

4.4. Goals for IA extension... 8

5. TECHNICAL APPROACH..9
5.1. Methodologies ... 9

5.1.1. Profile.. 11

5.1.2. Domain Model .. 14

5.2. Applying the Profile – the Demo (Books On Line) and Target (Ultra*Log)
Applications... 23

6. TECHNOLOGY TRANSFER ..24
6.1. Presentation : 2001 Rational Users’ Group Conference...................................... 24

6.2. Presentation : OMG Technical Meeting.. 25

7. FUTURE WORK...25

8. CONCLUSIONS AND RECOMMENDATIONS ..26

 i

1. Introduction
Every couple of weeks, or more commonly days now, some software vendor, researcher,
or analyst discloses some vulnerability in some mainstream software or system. In
typical fashion, the producing company or organization scrambles to create a patch to
close the problem as soon as possible. Sometimes, with time and analysis a patched
system proves to be worse off than those without it because the patch breaks existing
functionality or may add other, possibly more easily exploitable, vulnerabilities into the
system.

For the most part, there are two main ways to deal with this problem. The first
mentioned, and more common of the two, is “constant vigilance.” The term constant
vigilance is somewhat misleading however because it assumes that the software or
system producer acknowledges and attempts to address security vulnerabilities.
Commonly, this is not the case with postproduction analysis on a per incident basis.
Even then, the focus may not be on security but in eliminating bugs, which may or may
not enable security vulnerabilities. Also, some companies either skimp or completely
ignore post-analysis, depending on external groups to do their work for them.

The second way to address vulnerability problems is to design the software or system
with security in mind. This is less common because a company either lacks security
expertise or does not use it properly.

Therefore, this project proposed a way to increase the effectiveness of both types of
solutions, with a focus towards the second. Recognizing the problems of the absence of
security in the overall development process (design, implement, deploy, reanalyze) and in
software designer-security expert communication, the overall ideal for the project was to
devise a means to raise security awareness and facilitate dialog. The project team chose
to tackle this issue by merging Information Assurance concepts of security into a
common design and analysis tool.

This report specifies the overall goals, direction, analysis, and conclusions of the
Information Assurance extensions the team created for the Unified Modeling Language
(IA UML project). In addition to addressing the successes of the project, this document
proposes future venues and extensions to the projects successful, and reusable, work.
The following sections formalize the historical progression of the project. The first
portion discusses establishment of original goals, overview on the projects eventual
direction, and how both apply to the larger picture of UML analysis and design.
Additionally, this report documents some of the methodologies developed for the IA
extensions and presents an overview of the goals and achievements of the extensions.

Finally, the document includes discussion of potential future work that would enhance
changes for success of these techniques and other recommendations of the IA UML team.

 1

2. Original Goals
A current issue with software development and system deployment today is that most
security aspects either take a back seat to functionality/convenience, or remain absent due
to ignorance/laziness. Arguably most security issues derive from lack of planning and
focus during the early design and development stages that may then be compounded by
factors like compressed business cycles and “patch it later” mentalities. Another problem
during these critical early stages is the possible disconnects between software developers
and security experts. Expression and analysis of security properties in the contextually
rich language of a software design rarely happens. In today’s world, software developers
use design notations to describe their system analysis and resulting designs. The Unified
Modeling Language™ (UML) is the most commonly used of these notations.

Therefore, the overall goal of this project was to take the widely used, industry standard
UML1 and extend it with an Information Assurance model (i.e. security issues in the
context of IA) to remedy security and development communication issues. Our belief
was that, by taking advantage of UML extensibility, this project would help define a way
to choose, apply, and illustrate IA concepts in UML that could evolve or contribute to a
standard notation and methodology. The creation of an IA-UML Domain Model and a
corresponding IA-UML Profile would realize this goal, providing IA design information
and relationships at various levels of abstraction and perspective. For example, with this
common language in place, both software and security personnel could convey and
incorporate IA concepts into earlier design stages, averting potential future security issues
and problems. The language also helps contributors analyze current designs for
weaknesses and the impact of subsequent improvements. More specifically, the project’s
tools enabled IA engineers to capture IA designs, facilitate in-depth analysis for
countermeasure tradeoffs, support adversary countermeasure interaction modeling and
provide a method to design and conduct IA experiments. Those software professionals,
who are familiar with UML and the software development methodologies that use it,
readily comprehend the process and its results in the context of a software design.
Additional project goals and focus included countermeasure characterization,
countermeasure analysis, modeling of adversary-countermeasure interactions, structured
IA UML experimentation, and IA community outreach.

The project established several guidelines regarding the creation and development of the
IA UML Profile. This was important because success would require an extensible yet
conforming IA extension that would both not disrupt other UML aspects and comply
with model interchange tools. The following items indicate some of the guidelines:

• The IA UML Profile should not change significantly from application-to-
application. A major goal of the project was to provide a generalized and common
IA UML Profile for practically any application. The Ultra*Log Program was
proposed as a candidate to determine this success.

1 The Object Management Group (OMG) owns the UML trademark and administers the UML standard.

 2

• The IA UML Profile should be consistent with other UML profiles. The project
desired to only extend and therefore not conflict or cripple any other profiles for the
UML 1.4 standard.

• Design elements should be well formed and consistent with the UML Meta-
model. The elements chosen for inclusion in the IA UML Profile have properties and
functions correlated to IA concerns. These elements present in the IA UML Profile
mapped to the Meta-model of the UML 1.4 standard.

• IA design concepts should provide the proper level of abstraction and detail. IA
design notions and elements should express only information that is helpful to a
system designer at a specified design level. Clarification or removal of incorrect,
extraneous, and non-helpful aspects was attempted.

• The IA UML Profile should be consistent with model interchange tools. The
design used XML for the IA UML Profile to allow interchange between the various
UML tools currently available.

• The project should advocate IA specific sub-domains derived from this IA
Profile. In order for acceptance and usage, the project yielded a modular design for
the IA UML Profile. Thus, designers using the profile can create new elements for
specific design requirements that arise.

• For a complete Domain model, the design should consider several layers of
countermeasures within different system boundaries. In addition to consistency,
IA UML Profile development endeavored to address this modeling requirement since
it is very practical that a system/software may depend on other possibly external
components (e.g. third party middleware which a designer cannot change).

3. History
Several complete and reusable successes occurred despite the project’s reduction in
scope. Work began on the project in April of 2000. Initially, the bulk of work focused
on modeling the security domain. The project group enumerated classifications and
elements for common security countermeasures using UML semantics. Each member
took a defined set of the resulting Collaborations (e.g., encryption, authentication, and
access control) to develop. Collaborations are collections of UML elements, classes, and
interfaces that cooperate to provide certain functions or perform certain system actions.
In addition, collaboration may include non-system entities such as UML “actors.”2 In the
following months, project members worked on elaborating the parts and systems present
in / required to implement these collaborations in system design.

The culmination of this work and discussion lead to subsequent realization of a UML
Domain Model specification. This Domain Model successfully laid out IA concepts,
issues, and possible examples determined for inclusion in the IA UML extension (i.e.

2 See Section 4: UML for more UML concepts and information.

 3

Profile). Additionally this model contained the countermeasures and concerns for several
types of authentication, access control, encryption, and maintenance. At the end of 2000
and early 2001, work began to finish integration into a final Domain Model and started
resolving boundary concerns that arose from communication and control issues between
model elements and countermeasures.

During February and March 2001, the project proceeded by enhancing the security
metamodel to define specific model elements and attributes. The project then undertook
the task of mapping these formal attributes, based on IA concepts, onto the extension
mechanisms and semantics present in UML. Completion of the IA UML model elements
and attributes, i.e., UML stereotypes, tag definitions, tagged values, constraints, etc.,
produced a preliminary IA UML Profile around April 2001. Around this time, the project
group refined the existing IA UML Profile, while an outsourced group built a project to
apply and demonstrate the profile. The IA UML group began development of the Books
OnLine (BOL) application demo around mid 2001. After completing the current round
of auditing on the IA UML Profile, project members prepared presentations on the “IA
UML Profile Analysis Technique.” Members presented their work to both the Rational34
Users Group Conference and the Ultra*Log project group.5

The next planned step was to incorporate the IA UML Profile into development of the
large-scale Ultra*Log project, in order to further confirm the merits of this project. This
work would provide yet another valid demonstration and additional IA UML Profile
enhancement and analysis. However, program-restructuring issues suspended further
progress. The remaining time was used to polish the current IA UML Profile and related
documentation. The last major task for the IA UML project entailed presenting the
project and its associated successes to a technical meeting of the OMG Security Special
Interest Group on January 28, 2002. In the remaining time allotted, participants
completed this final report for the project.

4. UML

4.1. What It Is

As technology develops and demands the creation of new elaborate systems, the software
required to run these systems becomes increasingly complex. Using modeling languages
during the design, development, and improvement stages helps developers master

3 Rational Corporation is a prominent supplier of object-oriented software development tools,
methodology, and consulting to the software development industry. Three of the company’s principals
developed the UML
4 IA UML Profile Analysis Technique presented July 25, 2001 to the Rational Users Group Conference in
Denver, CO.
5 IA UML Profile Analysis Technique presented July 11, 2001 to the Ultra*Log Principal Investigators
Meeting.

 4

software complexity.6 Modeling languages allow designers to define and structure the
various code modules present and required for a given project. In the mid-1990’s, several
modeling languages/conceptions existed such as OMT (Object Modeling Technique),
Booch, and Object Oriented Software Engineering (OOSE). Due in part to possible
confusion and conflicts associated with transitioning between these languages, desire for
a uniform standard produced an effort to incorporate the various modeling languages.
The Uniform Method released in October 1995, was one of the early precursors to the
Unified Modeling Language (UML). This product was a result of the effort by Grady
Booch (Booch), a founder of Rational Software, and Jim Rumbaugh (OMT), who later
joined Booch at Rational.7 Later in the fall of 1995, Ivar Jacobson and his Objectory
company joined Rational and the unification effort with the OOSE method. Currently
maintained by the Object Management Group (OMG), many other leading
methodologists, software vendors, end-users of the various modeling languages
contributed (and still do) to the establishment of the UML standard. A common
modeling language is important for software engineers, just as blueprints are important
for architects. With UML, an understandable architecture permits a clear definition of
components and their interactions. Of course with any powerful tool, successful use
requires careful and proper application.

UML benefits development by helping maintenance personnel in identifying and tracking
problem areas even if the original designers are no longer available. It provides an
effectively absorbed written record of a system’s design and its relationships to the
problems that the system addresses. Although a project’s development cycle may entail
the same development team throughout its duration, in most cases some members will
come and go. Therefore, effective UML usage can help reduce the overhead of educating
new members, and accelerate code familiarity with existing members. UML also aids
code reuse. Depending on designer policies/facilities, a company or organization may
retain libraries of some or all of the implementations written for a given functional
component. Because of its complexity, most software development today occurs in
smaller teams that are responsible for components. Software components are collections
of code that solve a small, well defined set of functions that developers combine to
produce full systems or other components. UML not only aids in component design but
can also help in implementation by identifying similar, and previously written,
components. Using such components that have already been tested and established, cuts
down development time. Standardization also offers the benefit of competition between
tool vendors, increasing innovation as well as enabling choice and interoperability.

However, UML use is not a necessary condition for software creation. Other, often
similar notations are available. UML focuses on providing a standard language for
describing analysis and design concepts; it does not directly address how a given effort
uses the UML. The standard only deals with semantics for describing system analysis

6 Although the above indicates software and software-based systems, UML is not confined to software
alone and may model hardware, personnel, and other mechanisms.
7 Feldman, Boris. UML FAQ. http://www.devx.com/uml/umlfaq.asp, accessed July 2002.

 5

http://www.devx.com/uml/umlfaq.asp

and software design concepts along with mechanisms to extend these features to express
additional related concepts. Additionally, UML is not a visual programming language
nor intended to be.8 Because some people sometimes prefer diagrams instead of words to
describe software relationships, UML grants a standard way to communicate these issues.
Diagrammatic notations communicate some concepts, notably relationships between the
entities represented in the diagram, more successfully than other techniques.

4.2. Current Uses

Before discussing some common industry practices with, and usage of, UML, a brief
overview UML diagrams follows. The current UML 1.4 standard classifies twelve
diagram types into three unique categories. The specification9 defines diagrams for Static
Application Structure (four types – Class, Object, Component, Deployment,) Dynamic
Behavior (five types – Use Case, Sequence, Activity, Collaboration, Statechart), and
Organizational/Management (three types – Packages, Subsystems, Modules.) Each
category contains a distinct set of symbols and elements that visually indicate certain
aspects of the model, level, and perspective of a given diagram. For example, in
structural diagrams a three compartment box symbolizes a class whereas various arrows
represent certain inheritance relationships. Dynamic Diagrams use vertical lines to
symbolize objects with horizontal arrows indicating certain actions such as messages and
methods. Activity Diagrams follow a general top to bottom progression of control/flow
with rounded boxes symbolizing Guards (Conditional [true]) and arrows specifying
Decisions (Branches). The above is not a comprehensive look at UML functionality.
However, it helps to provide some general knowledge of UML.10

Structural diagrams are among the most used and helpful of UML’s diagrammatic
pantheon. Common and popular programming languages like C++ and Java lend
themselves to Object-Oriented Programming (OOP) methodologies. OOP handles a
problem by factoring parts of the problem into objects implemented usually by one or,
possibly, a few classes. Out of objects, designers can form components that are more
comprehensive. At these more abstract levels, the UML standard specifies diagrams to
accommodate the various views of a given system. Because UML leads itself to
programming methodologies, the methods frequently direct designers to generate
software designs using UML’s structural diagrams. For example, a structural diagram
might show a component used for encryption and decryption. These structural diagrams
also allow analysis of a given design aiding in solving dependency conflicts and issues,
functionality holes, and tight coupling problems.

Designers use UML dynamic diagrams to illustrate messaging and algorithmic processes
between objects. Dynamic diagrams might illustrate Internet interactions such as client-
server request-reply and authentication messaging, e.g., issue and verification

8 OMG Unified Modeling Language Specification. http://cgi.omg.org/docs/formal/01-09-67.pdf, July 2002.
9 Introduction to OMG's Unified Modeling Language. http://www.omg.org/gettingstarted/what_is_uml.htm
10 Holub, Allen I. A UML Reference Card. http://www.holub.com/class/uml/uml.html, accessed July 2002.

 6

http://cgi.omg.org/docs/formal/01-09-67.pdf
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.holub.com/class/uml/uml.html

functionality of userIDs, credentials, or certificates. Dynamic diagrams model a system’s
object creation, method calls, and execution flow for a system.

Activity diagrams demonstrate decision-making logic for algorithms and workflow. They
differ somewhat from dynamic diagrams since dynamic diagrams usually handle object
interactions, e.g., client server, whereas activity diagrams handle process
interactions, e.g., “Did client authenticate itself to the server? If Yes communicate; If
No disconnect from the client.”11 UML activity diagrams often demonstrate business
logic, e.g., “buy low, sell high” algorithms, and manufacturing procedures, e.g., “what to
do when” for auto assembly / repair.

4.3. Extensions

One desire in unifying the various pre-existing modeling languages was to keep the UML
standard relatively lightweight and simple. However, the effort also incorporated a built-
in extension mechanism to the core specification to allow users to refine UML
functionality to specific needs without breaking the core specification. UML extensions
cannot be arbitrary and must follow guidelines that disallow conflicts or contradictions to
the core UML semantics. Specifically, the Extension Mechanism subpackage defines
these guidelines regarding the usage of stereotypes, constraints, tag definitions, and
tagged values for customizations and extensions to the UML base8. Extensions direct
how one should use stereotypes to define new UML subclasses from the core UML
metaclasses. When creating extensions, stereotypes may also define new and unique
metaattributes and semantics. Grouping a coherent set of stereotyped, user-defined
elements creates a UML Profile.

Constraints, Tag Definitions, and Tagged Values contribute parts that further refine a
UML Profile. Constraints allow refinement of model element semantics. Thus, a
Constraint can enforce rules in addition to those of the stereotype of a modeling element.
This can allow diversification using broad stereotypes instead of multiple but somewhat
similar stereotypes. Depending on the Profile, some UML tools may even help in
enforcing constraints while modeling. Tag Definitions specify new properties for model
elements either as simple type definitions or also as references to other model elements.
The definitions help indicate element information and interactions that a stereotype
cannot or should not specify. Tagged Values are property values for a model element’s
definitions. Tag Definitions work at the metaattribute level whereas Tagged Values are
dependent on the specific model element.

11 Mentioned previously, different diagrams can visualize the same area but in different perspectives of a
given system design. A client-server software program, for example, could have three distinct but
interrelated views based on diagrams from each of the three major categories. For example, consider a
design containing three diagrams. A structural diagram shows the classes involved for the client and server
objects. A dynamic diagram illustrates the back and forth messaging between client and server objects that
are instances of classes shown in the structural diagram. Finally, an activity diagram demonstrates the
system’s authentication using the messages illustrated in the dynamic and structural diagrams.

 7

A UML Profile itself is a stereotyped package and can contain additional stereotype
definitions that augment the UML metamodel class hierarchy (hence, restrictions to
prevent name contentions.) Additionally, the Profile may introduce new symbols for
stereotypes and other extended model elements to reduce confusion with pre-existing
UML constructs. This is important because a UML Profile should be unique enough
such that adding orthogonal UML Profiles from other domains to a design does not result
in conflicts or contradictions. Effective UML Profiles limit themselves to distinct
domains for manageability. A UML Domain Model should address the issues and basis
for the creation of its respective UML Profile beforehand. However, not everything
mentioned in the Domain Model needs to be present in the Profile. It is possible that
several Profiles could have the same Domain Model and vice versa. Consequently, a
UML Profile will always remain an extension to the UML core because of the potential
for different but overlapping or redundant extensions.

Alternately, one may extend UML through its Meta Object Facility (MOF). The MOF is
a way to add new meta-constructs to extend the UML metamodel. As indicated in the
UML specification, this ability is “outside the scope and intent of the UML
specification.” The reason for this is that the MOF contains no restrictions or assurances
on the creation or interoperability of a new metamodel. Therefore, an extension to UML
will fall under a “lightweight” (and restricted) UML Profile or an added and possibly
incompatible “heavy-weight” MOF metamodel. This presents the axiom that “every
profile definition can be an MOF metamodel, but an MOF metamodel might not be a
valid UML profile.

4.4. Goals for IA Extension

The main goal of the project was to apply the knowledge of IA experts to create an
Information Assurance model as a useful extension to the core UML specification. The
goal for the extension was to concisely portray and educate UML system designers to the
concepts and analysis mechanisms used by IA experts. Thus, both groups, enabled by the
extension, can improve new and current systems through cooperation and common
communication.

In order to accomplish this successfully, the proposed IA UML extension consisted of
five main goals and stages of attack. Before jumping to design of the IA Profile (the
approximate major end goal,) part of the first phase was to get personnel (re)familiarized
with the UML concepts and functionality that later stages would incorporate. While
learning about UML and its extension mechanisms, the first goal was to design and
specify a Domain Model for the IA extension. This Domain Model serves first as a
primer to Information Assurance concepts and terminology, especially to the unfamiliar,
e.g., software engineers. The model also provided a record of the topics and issues
deemed important for an effective and useful IA UML extension. Therefore, even if an
unsuccessful or unacceptable IA UML Profile emerged, the same or another group could
salvage the Domain Model work for another attempt later. An added benefit to a Domain
Model is that it limits the scope of IA problems to a reasonable and agreeable realm while

 8

providing technical project documentation at the same time. After completion of
preliminary work and the Domain Model, the next step was to design the IA UML Profile
itself. Integrating the general IA concepts, laid out in the Domain Model, e.g.
countermeasures, into UML model elements completes the overall IA UML Profile. At
this second stage, several passes over the preliminary IA UML Profile to add missing
features or improve (i.e. simplify) existing model elements occurred. With a mostly-
complete Profile, the third goal for the extension was to actually create and demo a
sample system in UML using the Profile. The primary reason for this stage was to
validate and verify the successes of the preliminary profile. However, in the course of
applying the profile, this stage also seeks to develop methodologies in how to effectively
use the profile as well as discover any desirable but absent functionality. The final two
goals were to (1) further refine the IA UML Profile extension and application processes
to a real, large-scale system, and (2) present the project results to appropriate
organizations. The team worked on both goals at the same time. So, while perfecting
and finalizing the Profile, the project group could portray the project successes and lessen
delays for possible adoption and recognition of the IA extensions for UML.

5. Technical Approach

5.1. Methodologies

The first task of the project group was to define an overall methodology (i.e. common
way of thinking and plan of attack) for both the Domain Model and Profile constructs
(referred to as the IA extensions). Thus, members required a common scope of problems
to address and solve. They also needed a way to develop and assimilate their individual
work into the work of the group, and to assess that work’s success and viability as an
extension of Information Assurance (IA) concepts to the Unified Modeling Language
(UML). The four main classifications of Vulnerabilities, Threats, Countermeasures, and
Assurance emerged from several early group meetings. The IA UML team sought to
address each area during the progression of the project and development into an IA UML
extension.

As defined by the project team, Vulnerabilities compose the inherent, known or
unknown, weaknesses, exploits, breaks, etc. present in a given system or design. In
practice, no system is ever free of all vulnerabilities. However, through use of
Countermeasures and Assurance Arguments, an adept IA UML user can reduce the
overall set of vulnerabilities present both system design and deployment stages.
Additionally, model elements that address vulnerabilities, i.e., Countermeasures and
Assurance Arguments, may also only seek or succeed in mitigating a given vulnerability.
IA mechanisms can reduce the lethality of the vulnerability, e.g., authenticate an
unknown user but deny all access by it. IA mechanisms can also render the vulnerability
unfeasible, e.g., expensive costs require enormous amounts of time and/or money to take
advantage of the vulnerability.

 9

Threats take advantage of Vulnerabilities in the system. Threats can be inside or outside
the designed system. For example, a possible external threat might be bombing the
facility or physical location of the given system. It may also be a malfunctioning host.
Depending on the design, developers might address these types of threats with
countermeasures and Assurance that the countermeasure will mitigate certain attacks
from a threat.

The primary means of combating vulnerabilities is by using Countermeasures. A
Countermeasure, as defined by the IA UML group12, is a device or mechanism that
protects a given system against Vulnerabilities and Threats. In a UML-designed system,
the same Countermeasures may operate on various levels and so, be described by
different types of diagrams. Also, a system countermeasure does not have to take an all
or nothing approach. In most cases, in order to become effective, several model element
countermeasures must collaborate to provide the intended protection over the system.

Associated with countermeasures are Assurance entities. In the project’s methodology,
Assurance can be model elements or assumptions, restrictions or deferrals on either
elements or the model itself and arguments – empirical and analytic – for a
countermeasure’s effectiveness. Specified as a model element, an assurance can
collaborate with other model aspects and help shape policy concerns. The latter more
general type of Assurance can help reduce the scope of Vulnerabilities to practical and
manageable levels. For example, system designers could tag a cryptographic
countermeasure with an argument that an attacker does not have access to sophisticated
hacking technologies.

As the project team elaborated on the IA extensions, identifying and elaborating typical
Countermeasures became a large aspect of its work. Part of the reason for this is that
focusing on developing Countermeasures maximizes the primary facet of the project –
system security and defense. Additionally, developing pertinent countermeasure model
elements requires the corresponding progression of the vulnerabilities that they address.
The IA UML team did focus on defining Assurance and Threat model elements until time
pressures demanded that they continue on to subsequent phases. In addition, Assurance
elements are more of an interim or final step, as opposed to an initial step, of model
creation. Although Threat modeling has some important benefits, the project group
placed less focus on it because in general it is hard to determine, as well as explicitly
define and rank, the methods that an attacker might use to threaten. Threat models help
protect against only known attacks, not the unforeseen ones. Instead, the project team
logically sought to focus on developing IA extensions for Countermeasures and their
covered Vulnerabilities, adding only such Assurance as seemed reasonable in a first
“bootstrap” phase. The team felt that they would better address issues like threat and
claim analysis and by expanding on assurance as the methodology evolved.

12 See Information Assurance UML (IA UML): A Profile for Expressing Security Issues in UML Models,
NAI Labs Report #01-027D.

 10

Building from these categories and assessment of IA conceptions, the project underwent
the following three main components:

• IA Collaborations – the generic designs or patterns present in the IA Domain Model
used to produce security countermeasures and determine their effectiveness. Address
how to use the selected security elements in a design to counteract the expected
system threats.

• IA Domain Model – enumerates commonly seen security and system entities as well
as their interactions and relationships. Addresses what security elements to consider
when designing a particular system.

• IA Profile – describes the elements extended to the UML core model to express the
security features of a system as well as display understanding of security issues and
concerns. Addresses how to use UML to describe a design’s security features and
effectively communicate them to other colleagues.

5.1.1. Profile

Development and successful completion of the IA UML Profile by the project team was
the concrete means of providing an IA tool for system designers. This profile, denoted
“IA-UML,” defines how to express the IA information which, whether directly indicated
or not, touches all parts of any software and system. Additionally, the Profile conforms
to the extension mechanisms of the UML core. Designers can switch IA mechanisms in
and out of their designs and analysis at will. Although, in reality, “true” IA is a running
system (hardware inclusive) property, augmenting pre-defined IA model elements and
models into a system can increase security and information assurance. Building a system
from the ground up is not always possible, but designers effectively incorporating the IA
UML Profile as early as possible can reap security understanding as attributed benefits.
The Profile and its accompanying document12 provide a standardized way to collect and
organize the UML model elements that support IA structure and behavior. It is important
to note that the Profile itself does not directly demonstrate secure designs or methods.

The IA UML team’s purpose for the Profile was to allow designers to express system
designs that implement IA countermeasures. The Domain Model contains the education
and application guidelines for model element collaborations. A large part of the project
involved defining IA concepts in the Domain Model and then designing appropriate
model elements to allow designers to incorporate those aspects into their system designs.
Because of the reduced project focus and the Domain Model and Profile development
cycle, some IA concepts do not have Profile corollaries. It was also important for the
project to validate the IA UML Profile, which consumed additional time and resources.
Therefore, some future work on IA enhancements is still available.

The remaining portions of this subsection discuss the factors and functionality present in
the IA UML Profile.

The IA UML Profile identifies two tiers of elements, the Core elements and
Supplementary elements. The heart of the profile consists of the core, stereotyped

 11

elements whereas the supplementary elements are optional (yet recommended.) Any
system design done with the Profile should fully utilize all of the core elements. The
current IA UML Profile lists the following model elements:

Core (Base) Supplementary (Base)
InfoCon Class Authentication Context Class

Written Policy Class Pedigree Class

Implementation Policy Class Sensitive Association

Policy Domain Package Label Attribute

Countermeasure Collaboration

Assurance Argument Class

The first core element is the «InfoCon» element, which identifies other classifier
elements in the model. This element must contain a state machine responsible for
describing system integrity, the information condition of the given system. Typically,
states indicate security conditions and offer a range of “normal to threatened to
compromised”. Proper design of these states is essential so those system
countermeasures (object collaborations of the system) can react to changes in information
condition13. These “attack” levels or “information conditions” help to define eventual
security policies to govern individual countermeasure execution. The Profile defines
model elements for Policy according to Domain Model concepts.

Policies supply two main functions: rules to govern countermeasures behavior and
provide mechanisms to more effectively manage the system (or specific parts of it.)
Displayed above, the IA UML Profile contains two types of Policy model elements:
Written Policy and Implementation Policy. Written Policy denotes the human readable
document that lays out the security requirements as well as the appropriate and required
countermeasures for a given system. Implementing Policy is a code manifestation of a
Written Policy. An Implementing Policy can identify component collaborations or
configuration scripts that drive software system behavior.

However, any individual or group of systems may incorporate several policies at several
different levels. Therefore, a Policy will usually specify a Domain, referred to as a Policy
Domain, mapped to a UML Package. Because several policies may influence a given
model element, an effective design will not always restrict all elements to a certain policy
domain package. Thus, the project team decided to only require that «Policy Domain»
packages include collaboration definitions. This is because collaborations can reference
other participants without constraining them to certain portions in the hierarchy of a
model. One piece of the model can own the design while another references it in a
separate policy domain. The «countermeasure» stereotype fits into this system by

13 An example of this could be an auditing countermeasure that increases audit record details during an
attack on the system. Detail then decreases when the system identifies the type of attack, e.g., a resource-
constrained attack like Denial of Service.

 12

expressing IA behavior through the collaborations indicated in a policy domain. The
following list briefly describes the model elements available to a Profile user starting
with the Core stereotypes.

InfoCon «infocon» – applies to a class in a given model or level of a system. It contains
exactly one state machine describing relevant information condition levels and their
transitions. For the stereotyped object, a Statechart Diagram signifies all defined
condition levels, which can change other objects in the system and vice versa.
Incorporation with UML Interaction Diagrams and Activity Diagrams to detail system
behavior while under attack is also an option.

Written Policy «written policy» – depicts a written policy document that can exist as a
design or runtime system Constraint, requiring any «policy domain» package to include
at least one stereotyped «written policy» class. This class will contain a reference to the
actual document as a Uniform Resource Identifier (URI -- e.g., http://, file://, etc.)
Additionally, when using «implementing policy» stereotypes from the Profile,
«implementing policy» classes must be associated linked via an «assurance argument»
class to a «written policy» class.

Implementing Policy «implementing policy» – optionally applies to any model element
principally involved in countermeasure collaborations. The Profile also identifies
references through policy or configuration mechanisms.

Policy Domain «policy domain» – depicts all the relevant elements needed for
enforcement of a policy, linked to at least one written policy, and typically existing as a
«countermeasure» collaboration or, possibly, an actual class. The latter situation implies
inclusion based on sole support of the policies linked to that «policy domain».

Countermeasure «countermeasure» – optionally depicts collaboration behaviors
implemented and expressed by one or more countermeasures, each owned by at least one
«policy domain» package that in turn references a «written policy» indicating the
enforcement methods.

Assurance Argument «assurance argument» – different from class-based elements, these
include URIs to documents depicting the evidence surrounding a specific assurance
statement on how a defined «implementing policy» adheres to defined «written policy».
The Profile defines three types of policy:

• Empirical – usually a set of test cases, plans, or results from a defined operating
environment,

• Analytical – usually a mathematical and limited assertion proof demonstrating the
specified argument and

• Operating Environment – document(s) that define what environments are applicable.

The following comprise the Profile’s Supplementary stereotypes:

Authentication Context «authentication context» – applies to other countermeasure and
design interactions in the model that provide and indicate authentication status for a given

 13

Subject. Although the Profile does not define Tag properties for this element, it does
note two Constraints: encrypted, indicating encrypted Subject credentials possibly with a
Boolean or (more preferably) the type of encryption; and subject, indicating the
authenticated element or entity.

Pedigree «pedigree» – applies to any class with at least one attribute that references some
data or resource of another class that the designed system uses to determine integrity
characteristics. These classes may or may not rely on other mechanisms to determine
software or data integrity. Indicated in the Profile document, trusted sources handle
management of pedigrees and their meta-information about model objects and entities.

Sensitive «sensitive» – applies to any model element deemed specially significant and
responsible for the overall information assurance of a system. This element is primarily
for analysis and examination of system designs to tag important but restricted knowledge
about the model such as specific countermeasure collaborations or policy aspects.

Label «label» – applies to an attribute indicating a relationship or implementation of
Mandatory Access Control (MAC) countermeasures and collaborations, which utilize the
meta-information (i.e., state) of the tagged class for MAC decisions.

Just like the core UML specification, further work can extend Profile mechanisms using
concepts from the Domain Model. However, since the Profile currently employs an open
framework to apply IA concepts to UML designs, future extension of the Profile requires
proper care so that elements remain useful and non-restrictive to UML system designers.
The next section further discusses some of the IA topics IA UML Profile model elements
can tackle as well as other areas of interest for possible future development.

5.1.2. Domain Model

Although the IA UML Profile was the main result for the project, the team created the
Domain Model to act as a foundation for the IA UML Profile.14 For the duration of the
project, the Domain Model developed along the progression of:

• defining the relevant IA concepts and types for inclusion,

• defining those IA Collaborations and interactions, and

• defining the core aspects and principles of the Domain Model that govern the IA
UML Profile.

Aside from other mentioned benefits, the Domain Model grants an abstraction from the
UML-specific mechanisms which bind a resulting Profile. Therefore, software and
system designers intent on including security aspects need not only attempt to apply the
IA UML Profile. The Domain Model serves as a complementary IA extension and thus
allows UML users the opportunity to develop their own (desirably complementary) IA
Profiles depending on their project limitations. Future work and additional IA concept

14 See IA UML Domain Model, NAI Labs Report #01-026D.

 14

incorporation into the Domain Model can strengthen and increase the benefits of this IA
extension.

IA UML Domain Model, developed with the Rational Rose UML tool, resides in the Use
Case and Logical View in the Rational Rose tool. Therefore, the Domain Model applies
to several relevant diagram types available in UML. Diagram types and purpose for each
follows:

• Class – illustrates logical structures of a given countermeasure (or set of them).

• Object – illustrates system objects and their relationships.

• Component – illustrates physical structure of the system software under design. 15

• Deployment – illustrates mapping of the software system to the hardware
configuration. 15

• Use-case – illustrates outside interactions with the system under design. The
interactions are not only with users but also with outside systems and other
environmental factors.

• Activity – illustrates event flow within a given countermeasure or set of them.

• State – illustrates state and transition behavior. These are usually attached to a class.
16

• Interaction – illustrates countermeasure behavior with use collaboration and sequence
diagrams.

Early design stages for the IA extensions focused on a broad range of initial possibilities
for IA related model elements regardless of proposed (but untested) UML complications,
e.g., problems posed by policy elements. Through the course of a few meetings, formal
concepts and direction for the IA extensions formed.

The project team initially discussed Vulnerabilities and associated Threats,
Countermeasures and Assurance Arguments. However, the primary focus of the Domain
Model became composing a common set of IA Countermeasures. The model defines a
Countermeasure as a “device or mechanism that provides protection to a system against
some type of threat.” In order to reduce bloat, i.e., redundant, similar, and unwarranted
concepts, these were refined to combine topics into common and robust IA elements and
countermeasures. Despite a few non-fully functional countermeasures in the Domain
Model, the project work addresses these areas, offering insight and a start for possible
future work.17

15 Currently the focus level of the Domain Model and the Profile is only on the Logical View.
16 The InfoCon class is an example of this in the Domain Model.
17 Because of coupling issues, some of the non-functional concepts presented in the Domain Model have
non-functional or absent analogs in the IA UML Profile.

 15

After establishing the IA countermeasures, the next progression was to specify
collaborations. Collaborations are the interactions that occur in patterns of typical objects
to protect the system from certain threats (that the countermeasures seek to prevent).
Therefore, project members analyzed each countermeasure in terms of what other model
elements interact with it. Some countermeasures offer different types of collaborations,
indicated as subcollaborations in the Domain Model specification. The Domain Model
and collaborations specifically address the major IA concepts of Access Control,
Authentication, Audit, System Assurance Maintenance, Encryption, and Intrusion
Detection. The model also defines the elements of Integrity, Countermeasure, Policy,
and Policy Boundary (or Domain) for the IA extension. The following areas indicate
these Domain Model IA concerns, as well as their respective collaborations, in the above
order.

Access Control
In general, the term Access Control refers to the system that mediates resource access
depending on the subject or process. In the Domain Model, Access Control
countermeasures protect system integrity and confidentiality by restricting system use
and information retrieval. These countermeasures are closely associated with
authentication services, which verify and validate the identity of the subject. In the
absence or compromise of authentication collaborations, Access Control countermeasures
lose their ability to properly mediate access (the subject remains unknown and thus
restricted).18 In the Domain Model two types, or subcollaborations, are represented –
Discretionary and Mandatory Access Control (DAC and MAC respectively.) In addition,
the Domain Model denotes the Mediator, Access Control Policy, and Authenticated
Subject model elements.

Discretionary Access Control (DAC) arbitrates depending on the (usually previously
authenticated) identity and or properties of the subject. This subcollaboration type
permits the data owners to decide the access policy, which in turn dictates what / how
other subjects access that same data. These access policies usually take the form of one
of three types that use different ways of classifying the subject, data, and the interactions
between them. The first DAC collaboration type is User-Based Access Control. This
type grants or denies resource access depending on the identity a subject possesses. In
almost all cases, User-Based Access Control uses authentication countermeasures. User-
Based decisions are commonly used in access control systems today, e.g., operating
systems, where subjects log into a system via a terminal and user account, i.e., the
“effective identity.”

The second and usually dominating type of DAC in the Domain Model is Role-Based
Access Control (RBAC). In Role-Based access control, individual subjects share
common sets of resource permissions with other users. These collections form a Role.
Resource owners or administrators assign these Roles to subjects. In the general sense, a

18 This primarily assumes a consistent access control policy that, either by default or in the absence of an
authenticated subject, access is severely limited or outright denied.

 16

subject gains a Role that allows those and only those functions required to perform
specified tasks. In a given system, a subject may have multiple roles or even none,
relying solely on User-Based mechanisms.

The third type of DAC addressed by the model is Team-Based Access Control. During
completion of some project, team leaders create and assign Roles for the project.
Subjects then utilize the Roles to access team resources in order to perform their work.
Team access control policy may include subjects from many collaborating organizations.
So, this form of policy may result in limited and changing access based on timing issues,
milestones, redirections, etc. Under team-based access control policy, access is available
only when a user is part of a team, and only when the participated role allows.

Mandatory Access Control (MAC) has better controls on delegation and propagation of
permissions than DAC. Yet MAC typically coexists with discretionary policies. In this
case, a system denies access when either MAC or DAC mechanisms checks deny access.
For MAC resources, owners do not determine access rules. Instead, the system imposes a
consistent and unavoidable (hence mandatory) access policy for all resources. The
Domain Model specifies MAC collaborations as label-based access control, performing
mediation depending on those labels attached to subjects and resources. The US
Department of Defense orders labels in a hierarchy whereby the subject label must
dominate that of the resource. Addition of category or compartment labels to hierarchies
can be used to further provide access restrictions.19 For MAC countermeasures, any
detectable attempt to circumvent access control rules prevents access. A key assumption
of MAC countermeasures in the Domain Model is that only the security administrator
role, and that role alone, controls the group, role, and label membership, assignment, and
revocation.

Authentication
In general, the term Authentication refers to the system that verifies and validates the
identity of a given object or process. These countermeasures function by observing the
properties of the subject. What they are (biotech), what they know (password), and what
they possess (identity card) are all viable options in determining identity. In the Domain
Model, Authentication ensures truthfulness of identity claims (Fundamental
Authentication) and messages transfer (Communication Authentication). However, the
model handles each with different collaborations. Authentication also supports additional
countermeasures such as Accountability.20

The Authentication collaborations found in the Domain Model can apply to both human
and computer services as in peer entity authentication. High (strong) assurance

19 For example, in the general hierarchy of Top Secret Secret Confidential Sensitive, Secret access
(i.e. read) usually implies access to resources labeled Confidential as well. In addition, access may require
a ‘blackhawk’ category label from the subject. Commercial labels might include Proprietary, Company
Sensitive, or Internal Use Only.
20 Accountability, another IA concept, deals the functionality that allows enforcement personnel to trace
actions to a unique authorizing principal (i.e. determine the authorizing agent of the subject in question).

 17

authentication mechanisms can associate with other Domain Model collaborations like
Encryption, e.g., SSL and password encryption.

Most authentication countermeasures are ungated whereby the ability to authenticate is
always available and unrestricted. The other form – gated authentication processes –
place restrictions on the access and ability to authenticate. For example, with ungated
authentication, other countermeasures can undertake burdens like accessibility, such as an
unsupervised entry system in an already secured building. In an unsecured building, a
gated system might isolate access by only authenticating a single individual at any given
time (e.g. secured isolation zone) in order to prevent observation of other subjects. The
Access Control collaborations noted above interact with Authentication and its
Authenticated Subject model element.

The Domain Model describes four major authentication collaboration types each with
some possible minor types. In addition to the Fundamental and Communication
collaborations noted above, the model defines Challenge/Response, Sensor, Message, and
Session collaborations. Fundamental authentication is the basic form for other, more
specific authentication collaborations. Aside from Communication, the authentication
collaborations indicated in the Domain Model have added specific techniques and
constraints to the base Fundamental collaboration. Countermeasures used for
identification can have merit despite lacking a sufficient ‘secure’ aspect, e.g., userID but
no password. Thus, some of the collaborations present in the Domain Model may
employ these types of alternative countermeasures.

In the Challenge/Response collaboration, an Authenticator communicates a challenge
message to the Subject. Based on some preexisting and known procedure, the Subject
then responds according to the challenge message. This process may continue until the
Authenticator acknowledges the authenticity of the Subject.21 An instance of this in the
Domain Model, is Password Authentication whereby a system prompts the Subject with
an identity claimed and corresponding password.

For Sensor authentication, the Authenticator observes features inherent to the Subject that
may or may not involve Subject cooperation or awareness. Systems implementing
Sensor type collaborations usually perform both tasks of establishing identity and
checking authentication due to difficulty in counterfeiting relevant features.

In the Sensor authentication space, the model lists both Biometric and Token
authentication instances. Biometric instances primarily focus on observing the physical
characteristics of the Subject in question and matching them against a previous and
known record. Token instances observe the physical possessions that the Subject
possesses.

21 Certain implementations might be vulnerable to Replay attacks. This threat occurs when an attacker,
despite not knowing a password or other secret, eavesdrops on a successful authentication process and then
gains an unauthorized identity by duplicating and retransmitting the process’s messages.

 18

Whereas Fundamental authentication deals with direct Subject observations,
Communication authentication deals with proving that the Subject authorized some
communication actions on his behalf. The two instances of Message and Session
authentication for this collaboration are detailed in the Domain Model.

In Message Authentication, an Authenticated Message Sender sends messages to an
Authenticated Message Receiver. Authentication relies upon prior transmittal of
cryptographic keys to the Key Store of the Receiver from either the Sender Key Store or
a trusted intermediary. Relying on cryptographic techniques (e.g. encryption, digital
signatures) and restricted key possessions, both sender and receiver have means to verify
the message as well as its integrity. From this ability to verify the message, the
respective parties are able to authenticate each other.

In Session Authentication, a session joins two Authenticated Connections between
Message Sender and Message Receiver. Authentication Clients query their
Authenticated Connections to authenticate the messages received through that
connection. Similar to Message authentication, Session authentication relies upon prior
transmittal of cryptographic keys and associated techniques. Each participant consults
their respective Key Stores for proof of identity and exchanges their proofs when they
establish a session. Again, cryptographic techniques ensure the proofs are authentic and
not tampered with.

Audit

In general, the term Audit refers to a function where the system monitors and collects all
the relevant definable events that document the operation and use of that system. The
presence and strength of these records collectively determine the Accountability
properties of the system. Typically, a system automates the collection of audit events that
generated audit log entries in an audit trail, which chronologically details all the security
related system activities (and might include other aspects as well). These types of
countermeasures are important because they can identify and restrict the misuse or
attacks on the given system.

In order to manage collection, Audit policies (possibly using the Policy Model of the
Domain Model) govern what, where, and how events are gathered. These events may
originate in several systems components such as the operating system, database, or within
other countermeasures (e.g. fingerprint reader, firewall). Additionally, the Audit policy
can direct how to respond to a single or set of given events (is it security related, should it
raise an alarm, what if auditing is down, etc.). The Domain Model document also
specifies several model elements such as AuditPolicy, SecurityEvent, AuditLog, and
collaborations of System Audit Countermeasures.

System Assurance Maintenance
In general, the term System Assurance Maintenance refers to the system that maintains
and coordinates all the countermeasures within a system. Since any system is most likely
susceptible to at least some vulnerabilities, the system administration personnel must
constantly identify and apply security patches to improve or add countermeasures.

 19

Compounding the problem however, vulnerabilities are typically of a transitive nature.
Thus, despite patching countermeasures at one point in time, the vulnerability could still
appear and reappear in another countermeasure as well as the patch possibly injecting a
new and possibly unknown and undetectable vulnerability into the system. Any efficient
design must then recognize this as a fundamental design problem.

In conjunction with operational security, the Domain Model addresses Assurance
maintenance in the various mechanisms for policy enforcement and modification.
Vulnerability discoveries and changes in the mission of the system may compel updates
in policy. In addition, this concept can incorporate “red team” activities such as support
and verification as well as increase education and awareness of countermeasures
operations.

As indicated in the Domain Model, the Information Condition (InfoCon) model element
is an integral part of System Assurance Maintenance. The inclusion of the InfoCon
element in a system design affords a more adaptive detection and response when under
attack. The Domain Model utilizes InfoCon states in order to enact one or a series of
countermeasure policy changes to reduce and terminate a threat. Thus, integration of
these collaborations into a design can serve as a foundation to gauge and configure the
overall security posture of the system.22 In the model presented in the Domain Model
document, these collaborations require external interactions by vigilant support staff and
vendors to augment countermeasure maintenance. In addition, ongoing security
education of user and “red team” assessments of the current system and countermeasures,
and policies to conduct them, can all help increase system security and readiness.

In the general maintenance hierarchy of the Domain Model, staff falls under the direction
of the Command Authority. The Command Authority sets policy and can alter security
posture by mandating changes in InfoCon status. These InfoCon elements define state
machines for the permitted security postures of the system. In addition, state machines
also indicate the permitted transitions from one InfoCon status to another. Therefore, the
current InfoCon state is a representation of the current overall policy of a given system.
When a state change occurs, all countermeasures enforce the (possibly different)
countermeasure configurations in their new state. Proper system assurance maintenance
requires us to analyze all possible system states and all the possible transitions among
those states. As laid out in the IA extensions, collaborations for Security Assurance
Maintenance are complex but very beneficial.

Encryption
In general, the term Encryption refers to the system that protects system integrity, data,
and confidentiality. The Domain Model addresses this collaboration through
cryptographic countermeasures whose functionality can include one-way hashing (MD4 /
MD5) as well as secret, or private, key (DES, IDEA) and public key (PKI solutions)

22 See the diagram in the Domain Model Document for a more detailed look at System Assurance
Maintenance collaborations and applicable model elements as well as what functionality and advantages
their inclusion offers. 14

 20

cryptography. An essential requirement for countermeasures such as these is in proper
key management. Key management usually deals with the issue, storage, retrieval, and
revocation of cryptographic keys. Depending on the system, the Subject may handle
other concerns like key generation and distribution. In most cryptographic
countermeasures the security strength depends on the confidentially of some secret,
usually a cryptographic key. Although most of the common and thoroughly examined
algorithms in use today are public, this knowledge alone does not weaken security. Thus,
key management vulnerabilities and associated threats are independent from the
cryptographic countermeasures used. For Encryption, the Domain Model defines the
Client, Encrypted Information, Sensitive Information, and Encryption Engine model
elements.

One mechanism to provide data integrity and protect against non-repudiation is Digital
Signatures. Non-repudiation is a system property that, in the case of a conflict or
contention, can provide proof of a Subject and the systems actions at prior given time.
Strong non-repudiation is a large advantage in both liability and enforcement standpoints.
In addition, effective Digital Signature countermeasures must use non-forgeable
signatures and provide verification for signature recipients. In the Domain Model,
Digital Signatures guarantee that a particular client, who possesses a unique
public/private key pair, examined and signed a particular electronic message.
Additionally key signing ensures that no one has changed the message since its signing.
For a Digital Signature system or component, first a client signs a message by generating
a hash of the message, encrypting that hash with their secret (private) key, and appending
the encrypted hash (the signature) to the message. On the receiving end, the clients also
generates a similar hash of the message and decrypts the signature with the public key of
the sender. If the hashes are equal, the message is valid. If they do not match, then the
receiver knows the message was changed, or that the sender or the receiver has an
erroneous key pair.

In the Domain Model, Encryption countermeasures secure confidentiality and a degree of
integrity to system processes and resources. These countermeasures employ either
Symmetric or Asymmetric encryption. In symmetric encryption, both transformations
from cyphertext to plaintext and plaintext to cyphertext use the same exact key.
Therefore, this type of encryption requires that only authorized clients possess or receive
the shared secret key. Inherently, this type of system requires more trust than others do
because once an unauthorized client possesses a key the security mechanisms are
defeated. Asymmetric encryption uses two keys. The receiving client generates two
related keys – one public and sent via open channels. The other – the secret key – is kept
in a secure location. For this encryption type, the sending client encrypts a message
using the public key of the receiver. The receiving client then uses their secret key, the

 21

other key in the pair, to decrypt the message into plaintext. Because of the algorithms
involved, it is “very hard” to derive one key in the pair from the other pair key.23

Additionally, the Domain Model recognizes Mixed Encryption collaborations. This
combines symmetric and asymmetric encryption yielding asymmetric encryption features
but with the greater efficiency of symmetric encryption. In this hybrid, the sender
encrypts the message using a symmetric key. Using asymmetric cryptography, the secret
key of the sender encrypts and appends the asymmetrically encrypted symmetric key to
the message. After receiving the message, the process reverses as the receiver decrypts
with the public key of the sender to obtain the symmetric key. The symmetric key then
decrypts the message.

Another type of countermeasure available to Encryption collaborations in the Domain
Model is Public Key Infrastructure (PKI). These countermeasures use public key
encryption for authentication as well as data and system integrity. For PKI mechanisms,
Certification Authorities (CAs) perform similar tasks to key management but handle
certificates as well. Certificates and PKI can permit clients to verify message integrity
(with digital signatures) and use asymmetric encryption to keep messages confidential.
PKI clients obtain certificates by requesting a Certificate Authority (CA) to certify a
public key provided by the client. The CA verifies the client identity depending on
policy procedures for generating the type of certificate requested. Many different
standards and types of certificates are available, which provide differing levels of
protection. After client verification, the CA generates a certificate that contains the
public key of the client. The CA then digitally signs the certificate and sends it back to
the client.

Intrusion Detection
In general, the term Intrusion Detection refers to system functions that provide
monitoring, recording, and alarm functions that continuously check for misuse and attack.
Intrusion Detection countermeasures are often manifested as network boundary devices,
or as devices or hosts that passively monitor unauthorized access attempts and activities
on a network or system. Some current Intrusion Detection Systems (IDS) can detect and
attempt to prevent attacks in real time. Early warning and proactive solutions help
prevent attacks from spreading further to other systems and networks.24 Other IDS
systems attempt to provide information and determine attack patterns after the fact.
These types of collaborations help educate defenders and can lead to attack prevention in
the future. A third IDS type is “Expert” based. Expert system technologies exploit data-
mining techniques to detect and prevent attacks. IDS Signatures of “normal,” under
attack and current status can allow software-assisted discovery of possible and potentially
ongoing attacks. In addition to these types of IDS, this Domain Model collaboration

23 “Very hard” is somewhat of an understatement. While the process is theoretically possible, it is “very
hard” because the amount of computation required is not practical because it would take too long, typically
centuries, and be so very expensive as to rival the economies of some nations.
24 This is especially important in stopping flooding attacks whereby a machine is overwhelmed by too
many connection requests, access attempts, etc., leaving it unable to do its intended work.

 22

includes Audit trail countermeasures that might be present in various system security
components, e.g., firewalls, operating systems, or network routers. In most cases
Intrusion Detectors, either take an approach of signaling normal behavior deviations, or
look specifically at previous known attack patterns. Some more sophisticated IDS use a
hybrid of the two, either with uniform or separate component policy mechanisms to
govern each. Policy countermeasures play a large issue in IDS collaborations because
some policies may only detect or search for specific attacks or might be rendered
ineffective if scaled back due to too many false positives.25 Additionally, the Domain
Model includes Intrusion Detection Policy, Intrusion Detection Engine, Alarm Condition,
and Sensor model elements.

Concluding the Domain Model
Upon successful completion of both the countermeasures and their collaborations, the
final step for the Domain Model was the development of a submodel defining Policy for
the enumerated model elements. The Policy Model, modeled as a complex class
diagram,14 contains representations for the elements and characteristics of a security
policy. In addition, the submodel project incorporates concepts of policy hierarchy,
modification, traceability to requirements, and assurance of resulting policy. The
submodel expresses security policy as a composite of written and its implementing
policy. Modeling policy as this kind of relationship allows abstract implementing
policies to provide a diverse array of security policies, optionally shaped by
countermeasures and their respective attributes. The added development and inclusion of
this Policy Model is important because it extends IA policy concepts into UML, further
illuminating the complex issues of policy management and its associated problems to
non-IA system designers.

5.2. Applying the Profile – the Demo (Books On Line) and Target
(Ultra*Log) Applications

After elaborating a set of typical countermeasures (the Domain Model) and the
specification for describing the security features of a system (the IA UML Profile,) the
project turned to applying the profile to a demonstration application. Since, by this time,
the project had joined with the Ultra*Log program, the choice was clear – use the Books
On Line (BOL) demonstration application developed for the program earlier. The BOL
application mimics an online book dealer, similar to Amazon.com. All program
participants were already familiar with the application. The program’s members had
already seen the how the BOL application related to their ultimate application in the
Ultra*Log framework.

25 In the IDS context, false positives often occur from too finely tuned policies, resulting in threat and alarm
conditions despite the absence of an actual attack. Also, when base-lining normal behavior, intrusion
detectors risk acquiring an incorrect “normal” behavioral signature if it determines the signature while
under undetected attack.

 23

First, the project hired an outside consultant to reverse-engineer the BOL application.
This produced an object model describing the BOL application’s design. Next, the plan
was to enhance the model with elements of the IA UML profile that illustrated how one
could describe the BOL applications security countermeasures and attributes. Lastly, the
project would apply the profile to the design of the Ultra*Log system. The Ultra*Log
program would be undergoing enhancement of its largely missing security features. This
would be the ideal time to see how IA-enhanced UML could aid the effort.

Unfortunately, the BOL application (like the Ultra*Log application of that time) had little
in the way of security features. The project would have to enhance the BOL application
with countermeasures and then analyze them for effectiveness. The project began
concurrent exploratory efforts to add these enhancements to the BOL demo and to begin
to work with the Ultra*Log security team, whose efforts had been underway for quite
some time.

At about this point in time, circumstances overtook the IA UML project. The program
team and its management saw that they would have to make changes in the program’s
overall direction, necessitating a change in funding priorities. Management agreed that
the best course of action would be to bring an early end to the project’s work in order to
fund other work more central to the program’s goals. Together, they planned an orderly
end to the IA UML work. Consequently, further development, including the application
to the Ultra*Log analysis and design, was halted. Efforts began to present the project’s
work-to-date in order to transfer its technology to those who might be able to continue
the work – in industry and in subsequent research programs.

6. Technology Transfer
In the final phases of the project, attention turned to “getting out the word.” Severely
limited in resources, the project chose two opportunities that arose. The project’s
contributor from Rational Corporation, Jim Conallen, obtained a slot on the agenda of
that company’s annual conference, the Rational Users’ Group Conference, to be held in
July 2002 in Denver, CO. In September 2001, another team member, Brent Whitmore,
requested and was granted the opportunity to present the project’s work at the regularly
scheduled Technical Meeting of the Object Management Group in Anaheim, CA. These
meetings are the forum for OMG members where they determine changes to the
standards that the group administers, include the UML standard.

6.1. Presentation: 2001 Rational Users’ Group Conference

On July 25, 2001, Jan Filsinger and Jim Conallen presented the project’s work to the
Rational User’s Group under the title “Modeling Information Assurance (IA.)” Due to a
scheduling conflict with a very popular speaker, the session attendance was light.
However, those attending expressed considerable interest in the work and showed general
support for its approach.

 24

6.2. Presentation: OMG Technical Meeting

In January 2002, Brent Whitmore presented a slightly revised version of Jan and Jim’s
August presentation to the OMG’s Security Special Interest Group. The revisions mostly
provided for comment from the audience and a solicitation for help in carrying the work
forward.

The presentation elicited an hour and a half of follow-up questioning and discussion. The
idea of modeling security within a software design seemed surprisingly new to this rather
seasoned group of security professionals, many possessing decades of “hard” assurance
experience from some of the most security-conscious parts of government and industry.
Many were just unaware of how UML and modeling worked. Others had thought about
it before, but had never had the time or the resources to devote to actually doing such a
thing. Questions seemed evenly split between how UML and UML-employing
methodologies worked, and how our particular methods and notational extensions fit into
UML and UML-employing analysis and design methodologies.

Part of the presentation sought out specific comment on the work. The comments were
quite favorable. The group has addressed some of the most difficult problems of securing
distributed systems in the CORBA specification, seemed particularly taken by the ability
to denote countermeasures in designs and to make reasonable arguments for their
effectiveness. They commented that they would like to see a way for optional expression
of threats and attacks and their relationships to the extension’s existing IA features –
countermeasures, assurance arguments, etc. They also suggested increased support for
modeling boundaries and boundary controllers. They complained that “encryption”
should really be called “data protection,” a more general term. They also added that the
profile should add ways to characterize the pedigree and quality-of-service of software
and operating software facilities, such as a secure transports and trusted hosts.

Unfortunately, despite a plea for help, no one volunteered to shoulder the job of carrying
the discussion and work into the future.

7. Future Work
The project successfully completed several milestones, but like security work in general,
should be an ongoing process. Therefore, there are still several areas for future
development.

The IA methodologies developed by the project team indicate several major areas for
extension work. Discussed prior, current areas like Threat modeling show potential for
further expansion and can offer added advantages to UML designers. Additionally,
further elaboration of Threat Vulnerability Attack Countermeasure models is a
possibility as well. We should particularly incorporate the elements of the
Countermeasure Characterization process that Network Associates Laboratories has so
successfully applied in the past to other DARPA IA programs into IA UML methodology
and notation.

 25

In conjunction with this step, we should revise and publish a more concrete specification
for IA UML methodology and then subject it to Peer Review for further refinement. We
feel that examination of the methodology specification and consequent insight from
external sources helps to build community familiarity, support, and desire for the overall
IA extensions as well as strong technology.

We should expand the current Domain Model. Incorporating new or enhanced
collaborations and model elements can make the Domain Model more robust and useful
to both IA experts and software engineers. In addition, model integration with
methodology improvements can help justify the results of these changes. Completing
documentation of the Domain Model collaborations using UML diagrams incorporating
Profile features is another venue for work.

The Profile is also a target for future progress. Opportunities exist to expand the Profile
further, such as by defining specific Threat model elements or including common, but
presently lacking, elements like non-repudiation.

One goal in the progression of the project was to apply the IA UML extensions to designs
in order to help refine and verify the latest work as well as build confidence in the project
mission. Although work began on applying the Profile to a design, further completion is
required. Work towards successfully applying the IA extensions to a realistic project
would be advantageous. The Ultra*Log project may still be a viable candidate.
However, plans for potential work should not rule out other candidates and need not be
constrained to the original ones attempted by the project team. We are pleased to note
that the DARPA OASIS Demonstration and Validation Program, just begun, plans to
extend and apply IA UML notation and methods to parts of their work.

Ideally, IA UML development would iterate several times over a few project applications
with an end goal of becoming an OMG standard. Although the UML core is fixed, the
OMG administration can and will adopt well-defined and useful extensions for UML.
For this to happen however, the IA UML team should consciously follow and participate
in all of the OMG adoption process stages.

8. Conclusions and Recommendations
Although the Domain Model and Profile offer several opportunities for improvement and
expansion, the completed work shows real promise. The current IA extensions are a
good start in providing “hard” assurance functionality to IA experts and system
designers. Additionally, inclusion of team members from both the IA and software
engineering communities was a large advantage to the project.

The Profile would benefit from incorporation of several IA concepts already present in
the current Domain Model but not in the Profile. It would also benefit from some
rewording of terms. A single notion of encryption should be replaced with separate
notions of data protection and non-repudiation.

 26

27

IA UML’s underlying methodology needs to be expressed more precisely and
understandably. A single specification would benefit its users greatly. The methodology
and notation should expand its support for modeling threats as well.

The team recommends future work towards further fulfilling IA UML goals.
Specifically, the “Future Work” sections above outline some good starting points for
additional work. Because a lot of development has gone into the creation of the Domain
Model and Profile, future work should particularly emphasize the application of IA UML
technology to actual system analysis and designs. To realize IA UML standardization,
goals, the project team recommends several iterative applications of the IA UML Profile
and methods, with refinement of both between application steps.

Finally, the project team encourages current developers to actively use the currently
available IA UML extensions, or a similar extension, when they design systems with
important security needs.

	Introduction
	Original Goals
	History
	UML
	What It Is
	Current Uses
	Extensions
	Goals for IA Extension

	Technical Approach
	Methodologies
	Profile
	Domain Model
	Access Control
	Authentication
	Audit
	System Assurance Maintenance
	Encryption
	Intrusion Detection
	Concluding the Domain Model

	Applying the Profile – the Demo \(Books On Line�

	Technology Transfer
	Presentation: 2001 Rational Users’ Group Conferen
	Presentation: OMG Technical Meeting

	Future Work
	Conclusions and Recommendations

